Optimal Dosing of Antiplatelet Therapy in ACS

David J. Cohen, M.D., M.Sc.

Director, Cardiovascular Research Saint-Luke's Mid America Heart Institute

> Professor of Medicine University of Missouri-Kansas City

Disclosures

Grant Support/Drugs

- Eli Lilly/Daiichi-Sankyo
- Eisai Pharmaceuticals

Grant Support/Devices

- MedRAD
- Edwards Lifesciences
- Medtronic

Consulting/Advisory Boards

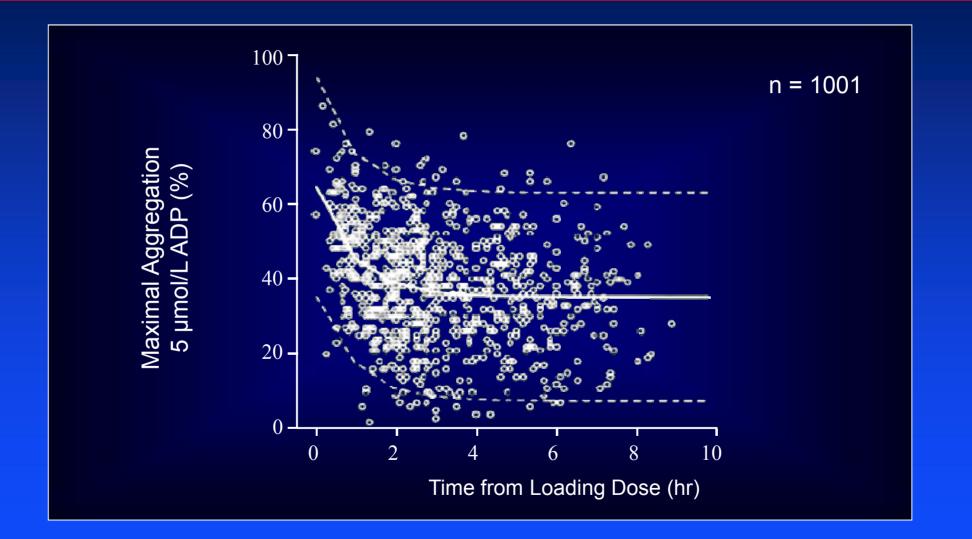
Medtronic

- Eli Lilly

Cordis

- Schering Plough

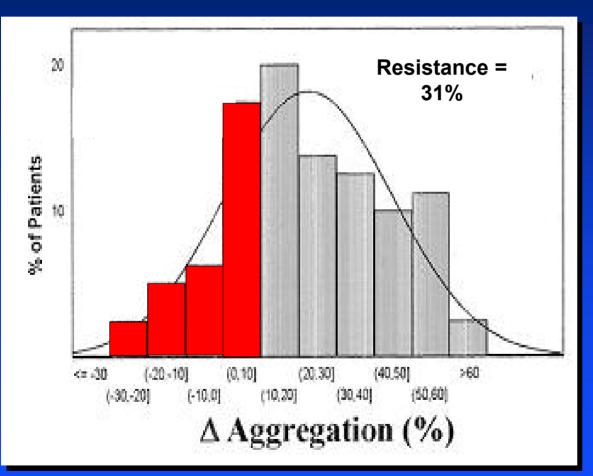
- Boston Scientific
 - Abbott Vascular


Optimizing Clopidogrel

- Clopidogrel "resistance" frequency and clinical outcomes
- Pharmacodynamic studies— can we overcome clopidogrel "resistance" through higher doses?
- Clinical studies
 – do these changes in platetet inhibition translate into clinical benefit?
- Implications for clinical care

Optimizing Clopidogrel

- Clopidogrel "resistance" frequency and clinical outcomes
- Pharmacodynamic studies— can we overcome clopidogrel "resistance" through higher doses
- Clinical studies— do these changes in platetet inhibition translate into clinical benefit
- Implications for clinical care


Variability in Platelet Reactivity After Clopidogrel 600 mg

Hochholzer W et al. Circulation. 2005;111:2560-2564.

Interpatient Variability in Clopidogrel Response

24 hours after PCI

Platelet Response Study

- 100 stent patients treated with clopidogrel 300 mg x 1, then
 75 mg QD x 1 month
- Platelet fxn assessed by LTA and p-selectin expression
- Clopidogrel "resistance" defined as <10% reduction in aggregation levels
- Resistance levels
 - 31% at 1 and 5 days
 - 17% at 1 month

Clopidogrel Resistance

Mechanisms of Variable Response

- Non-compliance
- Differences in underlying platelet reactivity
 - ACS, smoking, inflammatory state
- Genetic factors
 - Cytochrome P450 polymorphisms (e.g. CYP2C19, CYP2C9, CYP2B6) → reduced conversion of clopidogrel to active metabolite
 - Differences in absorption (ABCB1 transporter gene)
- Drug-drug interactions (e.g., PPI)
- Gene-Gene, Gene-Drug interactions....

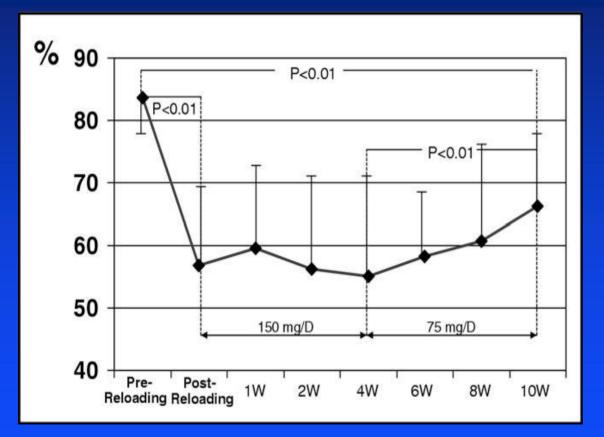
Relationship Between Clopidogrel Resistance and Post-PCI Ischemic Events

Degree of Inhibition of ADP-induced Platelet Aggregation

- 60 patients with STEMI treated with Primary PCI (15 patients per quartile)
- Clopidogrel 300 mg load / 75 mg/day x 3 months
- Ischemic events: stent thrombosis, MI, peripheral arterial occlusion

Matetzky et al, Circulation 2004

Poor Outcome and Inadequate Clopidogrel Response: A strong and consistent association across studies


	Ν	Clinical Setting	Outcomes		
Light Transmittance Aggregometry					
Matetzky et al.	60	STEMI undergoing PCI	Post-primary PCI ischemic events (6 months)		
Gurbel et al.	192	Nonemergent PCI	Post-PCI ischemic events (6 months)		
Gurbel et al.	120	Elective PCI	Post-PCI myonecrosis/inflammation		
Cuisset et al.	106	ACS undergoing PCI	Post-PCI ischemic events (30 days)		
Lev et al.	120	Elective PCI	Post-PCI myonecrosis		
Geisler et al.	379	Stable and unstable angina undergoing PCI	Post-PCI major cardiovascular events (3 months)		
Bliden et al.	100	Chronic clopidogrel undergoing nonemergent PCI	Post-PCI ischemic events (12 months)		
Cuisset et al.	190	NSTEACS undergoing PCI	Periprocedural myocardial infarction		
Angiolillo et al.	173	Type 2 DM on chronic dual antiplatelet therapy	Ischemic events (24 months)		
Marcucci et al.	367	MI undergoing PCI	Post-PCI myonecrosis		
Müller et al.	105	Elective PCI	Stent thrombosis		
Buonamici et al.	804	PCI with drug eluting stent	Stent thrombosis		
VASP-phosphorylation assay					
Bonello et al.	144	Stable angina and low-risk NSTEACS undergoing PCI	Post-PCI major adverse cardiac events (6 months)		
Frere et al.	195	NSTEACS undergoing PCI	Post-PCI ischemic events (30 days)		
Barragan et al.	46	Subacute stent thrombosis	Stent thrombosis		
Gurbel et al.	120	Subacute stent thrombosis	Stent thrombosis		
Blindt et al.	99	PCI with high risk for stent thrombosis	Stent thrombosis		
VerifyNow P2Y ₁₂ assay					
Price et al.	380	PCI with drug eluting stents	MACE and stent thrombosis (6 months)		
Patti et al.	160	PCI	Major adverse cardiac events (30 days)		
Marcucci et al.	683	ACS undergoing PCI	Major adverse cardiac events (12 months)		
De Miguel et al.	179	NSTEACS undergoing coronary angiography	Major adverse cardiac events (12 months)		
Others					
Sibbing et al.	1608	Elective PCI with drug eluting stent	Stent thrombosis		
Ajzenberg et al.	49	Subacute stent thrombosis	Stent Inrombosis		

Optimizing Clopidogrel

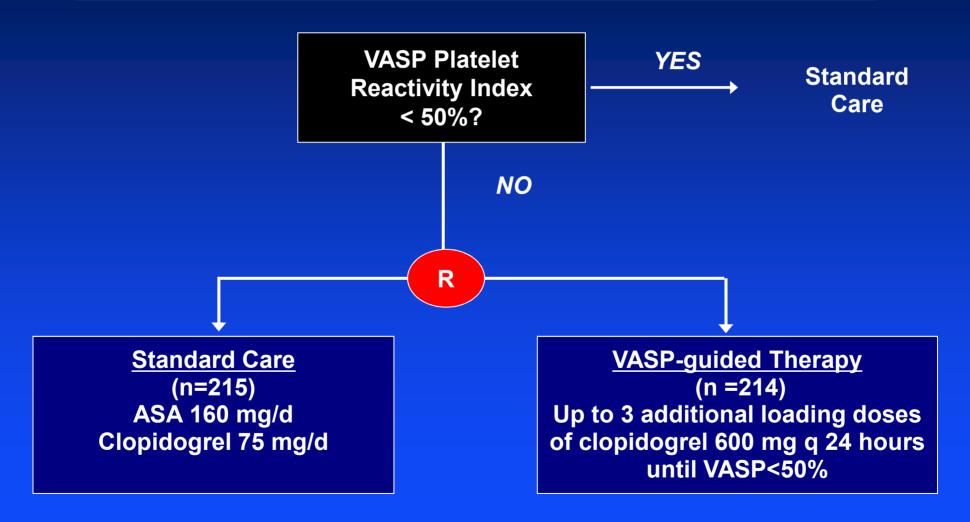
- Clopidogrel "resistance"
 frequency and clinical outcomes
- Pharmacodynamic studies
 – can we overcome clopidogrel "resistance" through higher doses?
- Clinical studies— do these changes in platetet inhibition translate into clinical benefit
- Implications for clinical care

Overcoming Clopidogrel Resistance

20 uM ADP Induced Platelet Aggregation

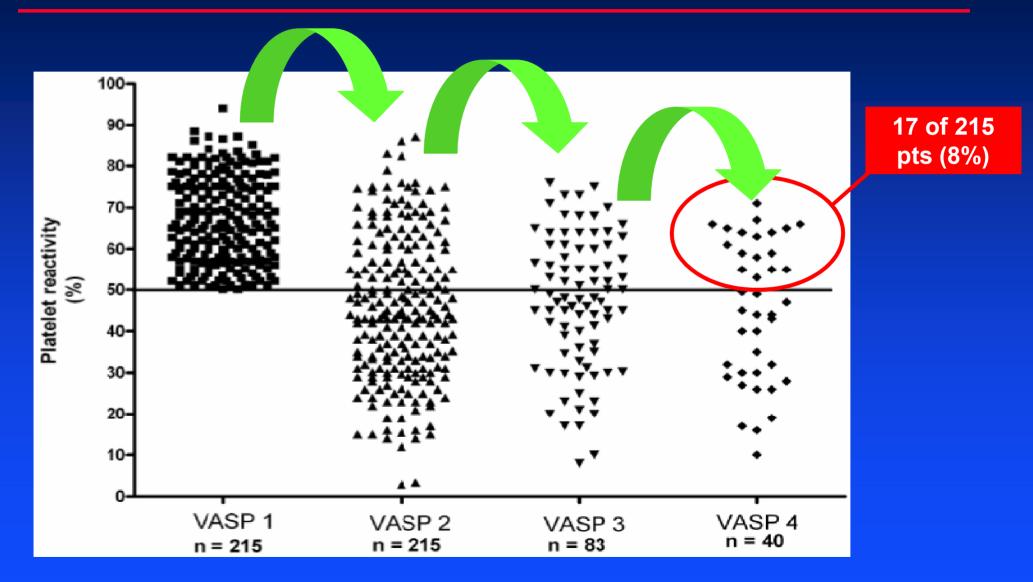
- 200 pts with AMI and PCI (75% STEMI, 25% NSTEMI)
- Initially received standarddose clopidogrel (300/75)
- Non-responders (n=30) defined as ADP-induced platelet aggregation >80% on day 4 → all treated with additional 600 mg load and 150 mg/day x 1 month

Optimizing Clopidogrel

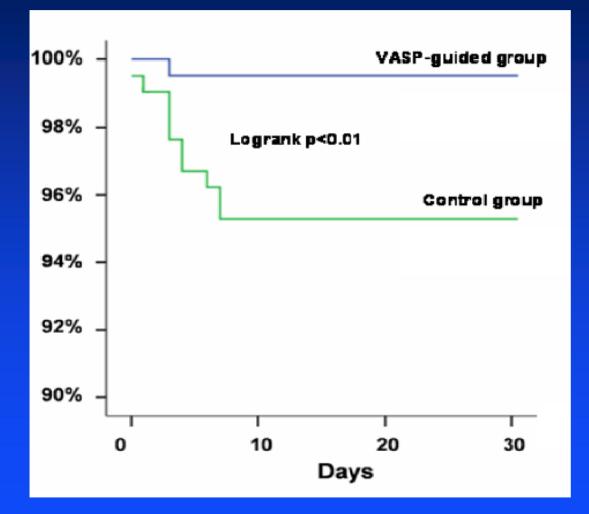

- Clopidogrel "resistance"

 frequency and clinical outcomes
- Pharmacodynamic studies
 – can we overcome
 clopidogrel "resistance" through higher doses
- Clinical studies
 – do these changes in platetet inhibition translate into clinical benefit?

Implications for clinical care

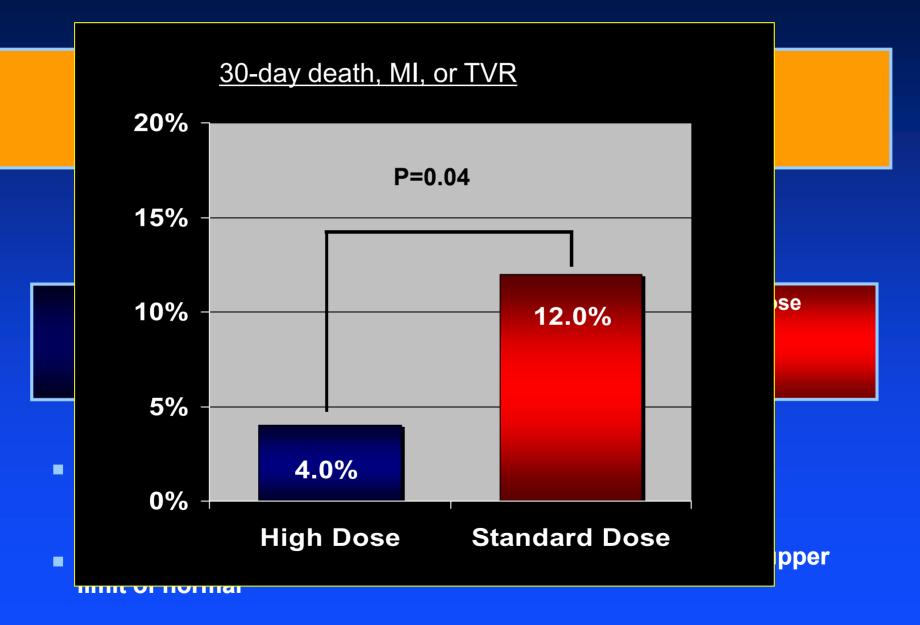

Patients undergoing non-emergent PCI for stable or unstable angina (n=1122)

Initial Rx: ASA 250 mg/Clopidogrel 600 mg


Bonello et al. Am J. Cardiol 2009; 103: 5-10

Tailored Clopidogrel: VASP-PRI

Bonello et al. Am J. Cardiol 2009; 103: 5-10


Tailored Clopidogrel: Stent Thrombosis

- Among patients with high residual platelet reactivity, VASP-guided clopidogrel therapy (1200-2400 mg load) reduced SAT from 4.7% to 0.5%
- Relative risk reduction of 90%

Bonello et al. Am J. Cardiol 2009; 103: 5-10

ARMYDA-2 Trial

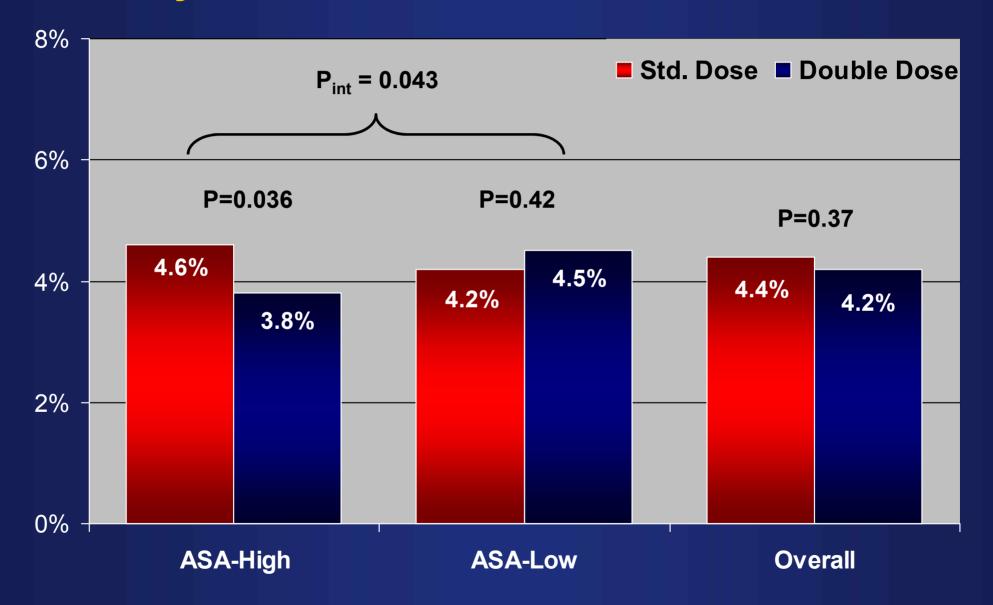
CURRENT Study Design, Flow and Compliance 25,087 ACS Patients (UA/NSTEMI 70.8%, STEMI 29.2%) Planned Early (<24 h) Invasive Management with intended PCI</p> ✓ Ischemic ECG Δ (80.8%) or \uparrow cardiac biomarker (42%) Randomized to receive (2 X 2 factorial): **CLOPIDOGREL:** Double-dose (600 mg then150 mg/d x 7d then 75 mg/d) vs Standard dose (300 mg then 75 mg/d) ASA: High Dose (300-325 mg/d) vs Low dose (75-100 mg/d) Angio 24,769 (99%) PCI 17,232 No PCI 7,855 (30%) (70%) No Sig. CAD 3,616 **CABG 1,809** CAD 2,430 Compliance: 7d 7 d 7d Clop in 1st 7d (median) 2 d **Efficacy Outcomes:** CV Death, MI or stroke at day 30 Complete Stent Thrombosis at day 30 Followup Bleeding (CURRENT defined Major/Severe and TIMI Major) **Safety Outcomes:** 99.8% Key Subgroup: PCI v No PCI

CURRENT ASA Dose Comparison Primary Outcome and Bleeding

	ASA	ASA	HR	95% CI	Р
	75-100 mg	300-325 mg			
CV Death/MI/Stroke					
PCI (2N=17,232)	4.2	4.1	0.98	0.84-1.13	0.76
No PCI (2N=7855)	4.7	4.4	0.92	0.75-1.14	0.44
Overall (2N=25,087)	4.4	4.2	0.96	0.85-1.08	0.47
Stent Thrombosis	2.1	1.9	0.91	0.73-1.12	0.37
TIMI Major Bleed	1.03	0.97	0.94	0.73-1.21	0.71
CURRENT Major Bleed	2.3	2.3	0.99	0.84-1.17	0.90
CURRENT Severe Bleed	1.7	1.7	1.00	0.83-1.21	1.00

GI Bleeds: 30 (0.24%) v 47 (0.38%), P=0.051

No other significant differences between ASA dose groups



2 Significant Interactions:
1. PCI v No PCI (P=0.016)
2. ASA dose (P=0.043)

Clopidogrel Dose vs. ASA Dose

CURRENT Clopidogrel Double-Dose vs. Single-Dose by ASA Factorial

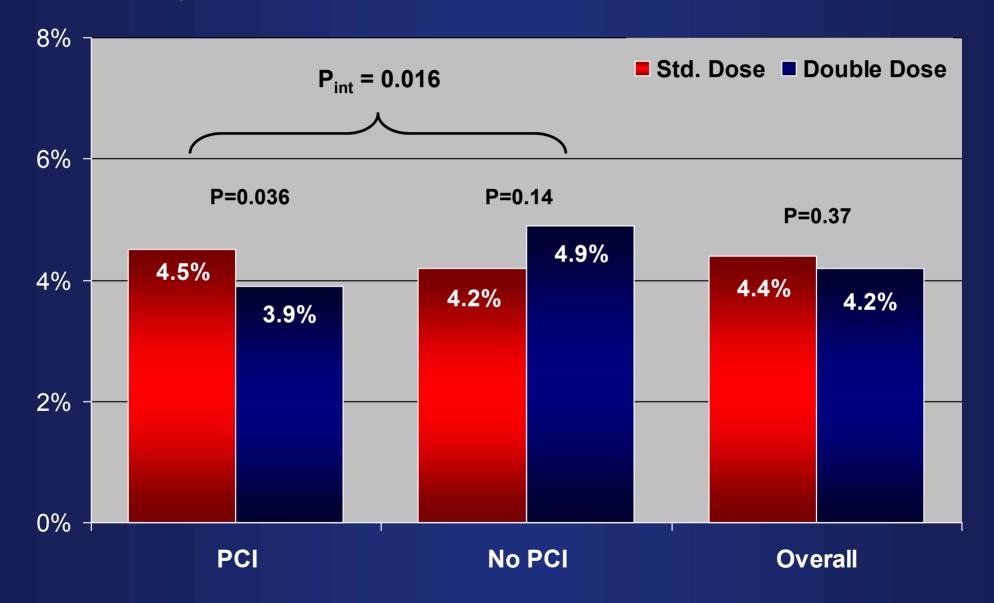
ASA Dose Interaction: Is it real?

- Interaction statistically borderline (p=0.043)
- No biologic plausibility

Conclusions

C vs. A interaction <u>unlikely</u> to be real

Implication


Don't need to analyze clopidogrel dose separately by ASA dose

interaction would be accentuated for the most platelet-specific endpoint (stent thrombosis) \rightarrow not seen in CURRENT

Clopidogrel Dose vs. PCI Strategy

CURRENT Clopidogrel Double- vs. Single-Dose by PCI Attempted

PCI-Clodidogrel Dose Interaction: Is it real?

Statistical interaction fairly strong (p=0.016)

Draviava atudias appointantly domanstrate graatast

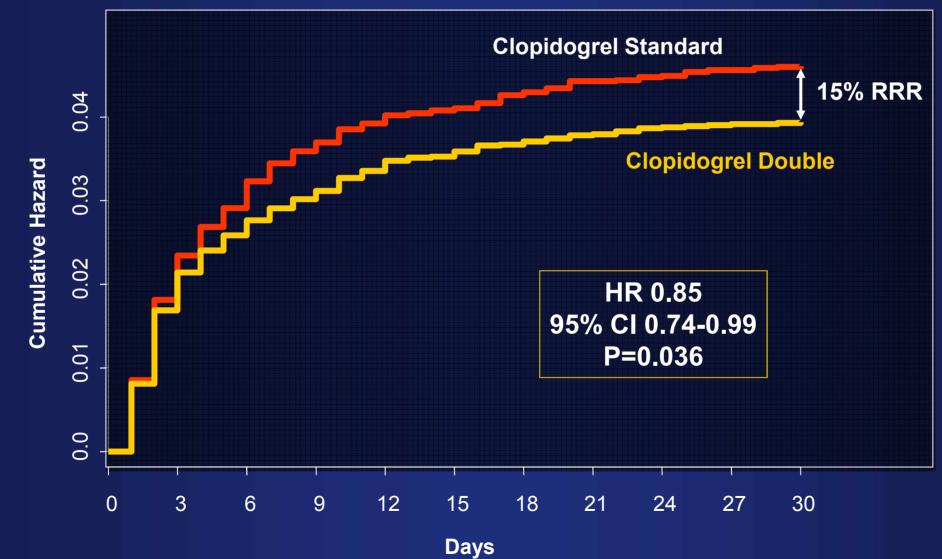
Conclusions

C vs. PCI interaction is most likely a true effect

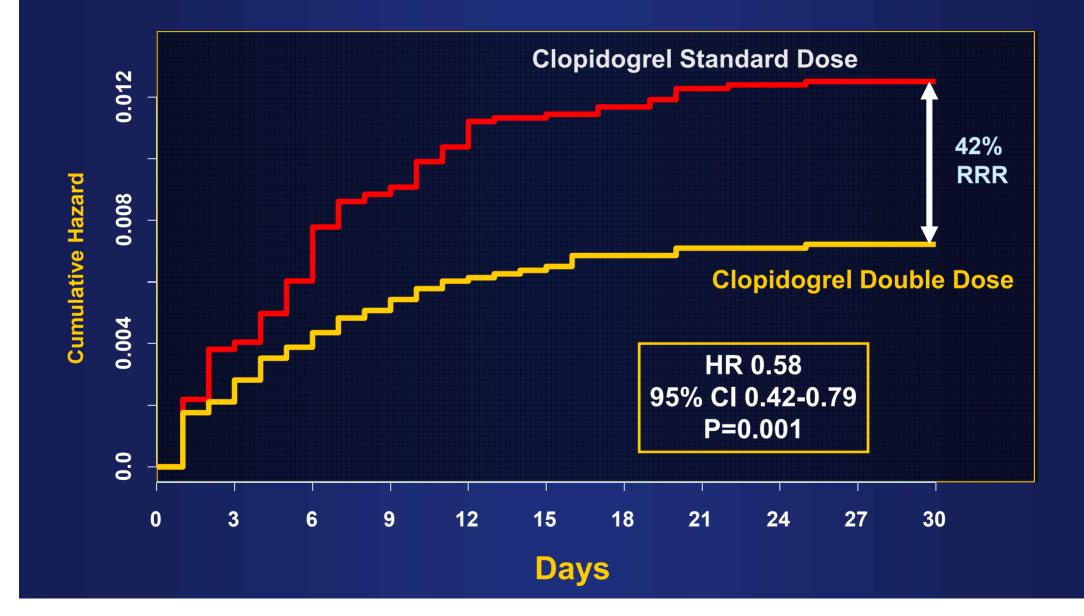
Implication

- Need to analyze clopidogrel dose separately by PCI strategy
 - Benefits of high-dose vs. low dose clopidogrel on biomarker release previously shown in PCI patients (ARMYDA-2 trial)

PCI Population (N = 17,232)



Clopidogrel: Double vs Standard Dose Major Efficacy Outcomes in PCI Patients


Day 30	Clopidogrel				
	Standard N=8684	Double N=8548	Hazard Ratio	95% CI	P value
	%	%			
Stent Thrombosis	2.3	1.6	0.71	0.57-0.89	0.002
Definite	1.2	0.7	0.58	0.42-0.79	0.001
MI	2.6	2.0	0.78	0.64-0.95	0.012
MI or stent thrombosis	3.7	3.0	0.80	0.68-0.94	0.008
CV Death	1.9	1.9	0.96	0.77-1.19	0.68
Stroke	0.4	0.4	0.88	0.55-1.41	0.59
CV Death/MI/Stroke	4.5	3.9	>0.85	0.74-0.99	0.036

CURRENT Clopidogrel: Double vs Standard Dose Primary Outcome: PCI Patients

CV Death, MI or Stroke

Clopidogrel: Double vs Standard Dose Definite Stent Thrombosis

CURRENT

Clopidogrel Double vs Standard Dose Bleeding PCI Population

	Clopidogrel				
	Standard N= 8684	Double N=8548	Hazard Ratio	95% CI	Р
TIMI Major ¹	0.5	0.5	1.06	0.70-1.61	0.79
CURRENT Major ²	1.1	1.6	1.44	1.11-1.86	0.006
CURRENT Severe ³	0.8	1.1	1.39	1.02-1.90	0.034
Fatal	0.15	0.07	0.47	0.18-1.23	0.125
ICH	0.035	0.046	1.35	0.30-6.04	0.69
RBC transfusion ≥ 2U	0.91	1.35	1.49	1.11-1.98	0.007
CABG-related Major	0.1	0.1	1.69	0.61-4.7	0.31

¹ICH, Hb drop \geq 5 g/dL (each unit of RBC transfusion counts as 1 g/dL drop) or fatal ²Severe bleed + disabling or intraocular or requiring transfusion of 2-3 units ³Fatal or \downarrow Hb \geq 5 g/dL, sig hypotension + inotropes/surgery, ICH or txn of \geq 4 units

Optimizing Clopidogrel

- Clopidogrel "resistance"
 – frequency and clinical outcomes
- Pharmacodynamic studies— can we overcome clopidogrel "resistance" through higher doses
- Clinical studies— do these changes in platetet inhibition translate into clinical benefit
- Implications for clinical care

Clinical Implications

- 1. Based on the CURRENT/OASIS-7 results, double-dose clopidogrel should be considered optimal for patients with ACS undergoing an early invasive management strategy
- 2. For patients who undergo PCI, double-dose clopidogrel should be continued for at least 1 week to assure maximal benefit
- 3. For patients who do not undergo PCI, the dose can be reduced once coronary anatomy has been defined
- 4. ASA dose probably doesn't matter for either efficacy or bleeding- at least in the short run